ON SIMULATING A MEDIUM WITH THE PROPERTY OF THE IDEAL MIRROR FOR THE LIGHT AND SPIN 1/2 PARTICLES

E.M. Ovsiyuk ${ }^{1}$, O.V. Veko ${ }^{1}$, V.M. Red' ${ }^{\prime}{ }^{2}{ }^{2}$

${ }^{1}$ I.P. Shamyakin Mozyr State Pedagogical University, Corresponding author e-mail: e.ovsiyuk@mail.ru, vekoolga@mail.ru
${ }^{2}$ B.I. Stepanov Institute of Physics of National Academy of Science of Belarus,
Maxwell equations formulated on the background of the Lobachevsky geometry in quasi-cartesian coordinates (x, y, z)

$$
d S^{2}=\mathrm{dt}^{2}-\mathrm{e}^{-2 \mathrm{z}}\left(\mathrm{dx}^{2}+\mathrm{dy}^{2}\right)-\mathrm{dz}^{2}
$$

can be understood as the Maxwell equations in Minkowski space but in a special effective medium [1-2]:

$$
\varepsilon^{\mathrm{ik}}(\mathrm{x})=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mathrm{e}^{-2 \mathrm{z}}
\end{array}\right|,\left(\mu^{-1}\right)^{\mathrm{ik}}(\mathrm{x})=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mathrm{e}^{2 \mathrm{z}}
\end{array}\right|,
$$

which provides the constitutive equations $D^{i}=\varepsilon_{0} \varepsilon^{i k} E_{k}, B_{i}=\mu_{0} \mu^{\mu^{k}} H^{k}, \varepsilon^{i k}(x)=\mu^{i k}(x)$. Thus, this effective medium is inhomogeneous along the axis, z. The Maxwell's equations have been examined within three-dimensional complex formalism of Majorana-Oppenheimer [3]

$$
\left(-i \frac{\partial}{\partial t}+\alpha^{(1)} e^{z} \frac{\partial}{\partial \mathrm{x}}+\alpha^{(2)} \mathrm{e}^{\mathrm{z}} \frac{\partial}{\partial \mathrm{y}}+\alpha^{(3)} \frac{\partial}{\partial \mathrm{z}}-\alpha^{(1)} \mathrm{s}_{2}+\alpha^{(2)} s_{1}\right)\left|\begin{array}{c}
0 \\
\mathbf{E}+i \mathbf{B}
\end{array}\right|=0
$$

explicit form of the matrices is given in [3]. After separation of the variables through the substitution

$$
\left|\begin{array}{c}
0 \\
\mathbf{E}+i \mathbf{B}
\end{array}\right|=\mathrm{e}^{-\mathrm{i} \omega t} \mathrm{e}^{\mathrm{iax}} \mathrm{e}^{\mathrm{iby}}\left|\begin{array}{c}
0 \\
\mathbf{f}(\mathrm{z})
\end{array}\right|,
$$

we get three equations

$$
\begin{gathered}
f_{1}=e^{z} F_{1}(z), f_{2}=e^{z} F_{2}(z) \\
f_{3}=\frac{-i b}{\omega} e^{2 z} F_{1}+\frac{i a}{\omega} e^{2 z} F_{2}, e^{z}=\sqrt{\omega} Z, \\
Z\left(\frac{d}{d Z}+a b Z\right) F_{2}=+\left(b^{2} Z^{2}-\omega\right) F_{1} \\
Z\left(\frac{d}{d Z}-a b Z\right) F_{1}=-\left(a^{2} Z^{2}-\omega\right) F_{2}
\end{gathered}
$$

With the help of linear transformation

$$
\begin{aligned}
& \mathrm{F}_{1}=+\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \mathrm{G}_{1}+\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \mathrm{G}_{2} \\
& \mathrm{~F}_{2}=-\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \mathrm{G}_{1}+\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \mathrm{G}_{2}
\end{aligned}
$$

the problem is reduced to the differential equation with simple singular points (0 and ∞):

$$
\mathrm{Z} \frac{\mathrm{~d}}{\mathrm{dZ}} \mathrm{G}_{1}=\omega \mathrm{G}_{2}, \mathrm{Z} \frac{\mathrm{~d}}{\mathrm{dZ}} \mathrm{G}_{2}=\left[\mathrm{Z}^{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)-\omega\right] \mathrm{G}_{1} .
$$

Further, the problem is described by Schrödinger like one-dimensional equation with an effective potential

$$
\left(\frac{d^{2}}{d z^{2}}+\omega^{2}-\left(a^{2}+b^{2}\right) e^{2 \mathrm{z}}\right) \mathrm{G}_{1}=0
$$

which is illustrated by the Fig. 1.

Fig. 1. Effective potential function $U(z)$
In the context of quantum mechanics, this equation describes the motion of a particle in a potential field, gradually increasing to infinity in the z coordinate striving to infinity; particle is reflected from the barrier and does not penetrate him. A similar situation occurs also in electrodynamics.

Thus, Lobachevsky geometry simulates an effective perfect mirror, distributed in space and oriented perpendicularly to the z-axis. The field penetration depth z_{0} into the «medium-mirror» is given by the relation

$$
\mathrm{z}_{0}=\rho \ln \frac{\omega}{\mathrm{c} \sqrt{\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}}}
$$

it is defined by parameters of solutions and the curvature radius ρ of the Lobachevsky space.
Similar analysís has been performed for a spin S particle. Influence of the geometry on the particles with spin 1/2 (nonrelativistic electron or neutron described by a generalized Pauli equation on the background of the non-Euclidean geometry) is the same: «medium» acts on the fermions as the perfect mirror, depth of penetration of particles with spin increases with energy and decreases with increasing the curvature of space.

REFERENCES

[1] V.M. Red'kov, N.G. Tokarevskaya, E.M. Ovsiyuk, George J. Spix. NPCS, 12 (3), 232-250 (2009).
[2] E.M. Ovsiyuk, O.V. Veko, V.M. Red'kov. NPCS, 16 (4), 331-344 (2013).
[3] E.M. Ovsiyuk, V.V. Kisel, V.M. Red’kov. Maxwell Electrodynamics and Boson Fields in Spaces of Constant Curvature, New York, Nova Science Publishers Inc. (2014).

