В.С. САВЕНКО, А.Г. СИЛИВОНЕЦ, С.А. ЕРМОКОВЕЦ

МГПУ ИМ. И.П. Шамякина (г. Мозырь, Беларусь)

ВЛИЯНИЕ ПОНДЕРОМОТОРНЫХ ФАКТОРОВ ПРИ ЭЛЕКТРО-ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ МАГНИЯ

В работе представлены результаты исследования влияния импульсного тока на реализацию электропластической деформации. В качестве материала был выбран магний, он широко используется в современной технике благодаря низкой плотности, что позволяет существенно снизить вес изделий и конструкций. Магний широко применяется в авиационной и автомобильной промышленности.

В статье приведены расчеты пондеромоторных факторов собственного магнитного поля и электрического поля внутри проводника при реализации многоходовой электропластической прокатки магния.

Введение. Существует ряд факторов вторичного силового действия импульсного тока, которые влияют на пластическую деформацию металла, находящегося под механическим напряжением выше предела текучести. Таких, как пинч-эффект, возникающий под влиянием собственного магнитного поля тока и поляризации электронной подсистемы металла с созданием поперечного электрического поля Холла, препятствующего дальнейшему сжатию электронной плазмы.

Скин-эффект – реализует уменьшение амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. При протекании переменного тока

высокой частоты по проводнику создающего неравномерное распределение по сечению плотности тока с уменьшением в приосевых областях и увеличением вблизи поверхности проводника. И связанный со скоростью диффузии магнитного поля в металл и наличием характерного времени au_{π} проникновения магнитного поля в проводник с током [1].

Следует отметить, что во время электропластической деформации, кроме вторичных пинч- и скин-эффектов при пропускании импульса электрического тока, наблюдается термическое разупрочнение решетки, расчет параметров которого для рассматриваемых длительностей импульсов тока $(10^{-4} - 10^{-5})$ несущественным.

Пинч- и скин-эффекты. Электропластическая деформация реализованная многоходовой прокаткой магния (35 переходов) при пропускании через металл импульсов тока плотностью 10^3 $A/мм^2$, длительностью и частотой следования импульсов 10^{-4} с и 600 - 800 Гц. Конечные геометрические параметры после 35 переходов: толщина – 1мм, ширина – 4мм.

На поверхности образца собственное магнитное поле принимает максимальное значение (рисунок 1а):

$$H_m = 0.2 \frac{I_a}{r} = 400(3),$$
 (1)

где I_a – амплитудное значение силы тока в проводнике, тогда: $I_a=jS,$

$$I_a = jS, (2)$$

где S- площадь поперечного сечения проводника.

Механическое давление на поверхности образца, за сжатие электронной плазмы равно (рисунок 1б):

$$P = \mu \frac{H_m^2}{8\pi} = 0.0789 (\Pi a),$$
 (3)

где P – механическое давление (Па),

 μ – магнитная проницаемость для магния – 1,257·10⁻⁶ $\frac{\Gamma_{\rm H}}{}$.

Максимальная осевая сила с от пинч-эффекта равна:

$$F_z = 2\nu PS = 0.171(H),$$
 (4)

где F_z – максимальная осевая сила,

v – коэффициент Пуассона равный 0,27,

P – механическое давление, S – площадь сечения образца.

Особую роль в явлении электропластичности играет материал образца и его проводимость, скорость диффузии магнитного поля в образце, от которых соответственно зависит величина пинч-эффекта. Величина пинч-эффекта также зависит и от круговой частоты, которая составила 600 – 800 Гц. Добротность Q должна быть небольшой, например при $R \le 0,1\,\mathrm{Om},\ L \cong 10^{-7}\,\Gamma$ н и $C \cong 10^{-3}\,\Phi$ составляет величину $Q \le 0.1$ [3, 4], а длительность импульса минимальна, и составила $\tau = 10^{-4}$ с.

Толщина скин-слоя для образца магния определилась (5):

$$\delta = \sqrt{\frac{2}{\mu\sigma\omega}},\tag{5}$$

где δ — толщина скин-слоя, μ — магнитная проницаемость магния,

 σ – удельная проводимость магния, ω – частота следования импульсов.

Тогда толщина скин-слоя при 600 Гц: $\delta = 0.01081$ (мм).

Толщина скин-слоя при 800 Гц: $\delta = 0.00936$ (мм).

Очевидно, что при достаточно большой частоте ω толщина скин-слоя может быть очень малой (рисунок 2).

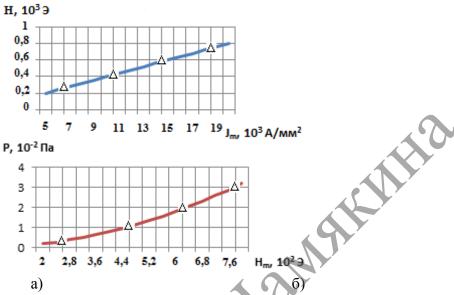


Рисунок 1-a) изменение собственного магнитного поля тока H на поверхности магния при различных значениях плотности тока J_m ; б) изменение механического давления P на поверхности магния при различных значениях собственного магнитного поля тока H

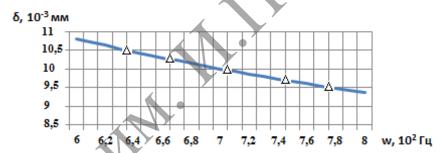


Рисунок 2 – Изменение величины скин-слоя δ от круговой частоты ω

ВЫВОД. Для достижения максимума пинч-эффекта необходимо выбрать такую частоту импульса тока, чтобы магнитное поле не успевало существенно проникать через поверхность образца. При деформации образца за счет пинч-эффекта магнитное поле диффундирует и кристалл, при этом скорость диффузии зависит как от проводимости металла, так и от частоты тока. При одной и той же геометрии образцов пинч-эффект выражен сильнее на том материала, который обладает высокой электропроводностью.

Таким образом, импульсный ток, помимо электронно-пластического действия, оказывает и пондеромоторное действие на деформируемый материал (сжатие образца собственным магнитным полем и возбуждением упругих колебаний с частотой следования импульсного тока) [1; 2].

ЛИТЕРАТУРА

- 1. Савенко, В.С. Механическое двойникование и электропластичность металлов в условиях внешних энергетических воздействий / В.С. Савенко // Монография. Изд.. 2-е доп. и перераб. Минск: БГАФК 2003. С. 203.
- 2. Рощупкин, А.М. О влиянии электрического тока и магнитного поля на взаимодействие дислокаций с точечными дефектами в металлах / А.М. Рощупкин, И.Л. Батаронов // Физика твердого тела. 1988. т/30. №11. С. 3311.
- 3. Баранов, Ю.В. Физические основы электроимпульсной и электропластической обработок и новые материалы / Ю.В. Баранов [и др.] М.: МГИУ, 2001.-844 с.
- 4. Троицкий, О.А. Фундаментальные и прикладные исследования электропластической деформации металлов / О.А. Троицкий, В.С. Савенко. Минск: ИВЦ Минфина, 2013. 375 с.