В. В. ШЕПЕЛЕВИЧ 1 , А. В. МАКАРЕВИЧ 1 , В. Н. НАВНЫКО 1 , М. А. АМАНОВА 1 , С. М. ШАНДАРОВ 2

¹УО МГПУ им. И. П. Шамякина (г. Мозырь, Беларусь)

²УО ТУСУР (Томск, Россия)

СМЕШАННЫЕ ПРОПУСКАЮЩИЕ ГОЛОГРАММЫ В ФОТОРЕФРАКТИВНОМ ОПТИЧЕСКИ АКТИВНОМ ПЬЕЗОКРИСТАЛЛЕ ВТО

Недавно в [1, 2] было установлено, что в кубическом пъезокристалле $Bi_{12}TiO_{20}$ (BTO) записываются фазовая и амплитудная голограммы одновременно. В таком случае общую голографическую решетку называют смешанной голограммой.

В этих работах впервые было экспериментально и теоретически показано, что наличие амплитудной составляющей смешанной голографической решетки в кристалле ВТО существенно изменяет дифракционную эффективность голограммы. Если зависимость дифракционной эффективности η фазовой голографической решетки от ориентационного угла θ кристалла представляла собой четырехгорбую кривую с одинаковой высотой горбов, то для смешанной голограммы форма зависимости $\eta(\theta)$ разделялась на две пространственные части, в каждой из которых высота горбов была различной.

В работе [1] была установлена также величина параметра связи, который отвечает за вклад амплитудной составляющей решетки в дифракционную эффективность смешанной голограммы.

Дифракционная эффективность смешанных голограмм является функцией среза кристалла, его толщины d, ориентационного угла θ и азимутов Ψ_0 линейной поляризации световых пучков R и S. На основании этого нами проанализированы закономерности влияния этих параметров на значения дифракционной эффективности пропускающих голограмм и выполнена теоретическая оптимизация процесса их считывания в кристаллах срезов $(\overline{110})$ и $(\overline{112})$ толщины d=7,7 мм.

силленитов естественная кристаллом оптическая пьезоэлектрический и фотоупругий эффекты значительно усложняют теоретическое описание процессов взаимодействия световых волн с записанными в них голографическими решетками. Вероятно, по этой причине во многих научных работах по изучению и применению силленитов рассматриваются только такие их пространственные ориентации относительно плоскости распространения опорного и предметного световых пучков, при которых вектор голографической решетки \vec{K} параллелен или перпендикулярен кристаллографическому направлению [001]. Как известно, например, из [3], при таких кристаллических ориентациях вклад обратного пьезоэлектрического и фотоупругого эффектов в выходные энергетические характеристики голограмм либо отсутствует $(\vec{K} \parallel [001])$, либо им можно пренебречь $(\vec{K} \perp [001])$, что значительно упрощает производимые теоретические расчеты. Однако следует отметить, что в таких случаях не удается достичь наиболее высоких значений выходных энергетических характеристик голограмм, к которым относятся их дифракционная эффективность и коэффициент усиления предметной световой волны при двухволновом взаимодействии.

На рисунке 1 представлены графики зависимости дифракционной эффективности η голограмм, записанных в кристаллических пластинках BTO срезов $(\overline{1}\,\overline{1}0)$ и $(\overline{1}\,\overline{1}2)$ толщины d=7,7 мм, от ориентационного угла θ .

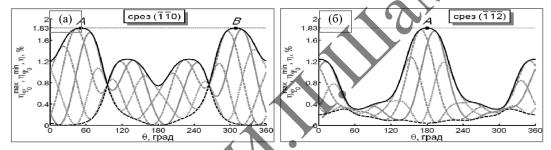


Рисунок 1. — Зависимости дифракционной эффективности голограмм, записанных в кристалле ВТО толщины 7,7 мм, от ориентационного угла кристалла: а — для среза $(\overline{1}\,\overline{1}0)$, б — для среза $(\overline{1}\,\overline{1}2)$

Здесь сплошной, штриховой, штрихпунктирной и пунктирной серой линиями изображены функции $\eta(\theta)$ для соответствующих азимутов линейной поляризации Ψ_0 , равных $0,45^\circ,90^\circ$ и 135° . Выбор толщины рассматриваемого кристалла обусловлен тем, что в [1] при экспериментальном и теоретическом обнаружении сметанных голограмм в ВТО использовался образец среза ($\overline{110}$) именно с таким расстоянием между двумя его «рабочими» гранями. При этом рассматриваемые кристаллические срезы принадлежат семействам $\{110\}$, и $\{112\}$, которые наиболее часто встречаются в научной литературе при из учении фазовых голограмм (см., например, [4,5]).

Проведенные расчеты показали, что оптимизация дифракционной эффективности за счет изменения азимутов поляризации световых пучков приводит к двум самым высоким значениям дифракционной эффективности $\eta_{\Psi_0}^{\text{max}}=1.83\%$ смешанной голограммы для среза $(\overline{1}\ \overline{1}0)$ кристалла ВТО.

Аналогичный максимум дифракционной эффективности для среза $(\overline{112})$ получен только при одном значении Ψ_0 .

ЛИТЕРАТУРА

- 1. Шепелевич, В. В. Смешанные пропускающие голограммы в фоторефрактивном пьезокристалле Ві₁2ТіО₂₀ / В. В. Шепелевич, А. В. Макаревич, С. М. Шандаров // Письма в ЖТФ. 2014. Т. 40, № 22. С. 83–89.
- 2. Макаревич, А. В. Выходные характеристики смешанных голограмм в кристалле Bi₁₂TiO₂₀ среза (110). Теория и эксперимент / А. В. Макаревич, В. В. Шепелевич, С. М. Шандаров // Письма в ЖТФ. 2017. Т. 87, № 5. С. 776–771.
- 3. Шепелевич, В. В. Запись и считывание голограмм в кубических гиротропных фоторефрактивных кристаллах (обзор) / В. В. Шепелевич // ЖПС. -2011.-T.78, № 4.-C.493-515.
- 4. Photorefractive properties of $(1\overline{10})$ and (111)-cut sillenite crystals when external electric field is applied along the direction of the optimum diffraction efficiency / N. C. Deliolanis [et al.] // Appl. Phys. B. 2002. Vol. 75, No 1. P. 67–73.
- 5. Polarization effects at two-beam interaction on reflection holographic gratings in sillenite crystals / S. M. Shandarov [et al.] // Laser Physics. 2007. Vol. 17, № 4. P. 482–490.